首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1919篇
  免费   71篇
  国内免费   46篇
化学   286篇
晶体学   3篇
力学   115篇
综合类   1篇
数学   57篇
物理学   1574篇
  2023年   11篇
  2022年   12篇
  2021年   17篇
  2020年   29篇
  2019年   9篇
  2018年   10篇
  2017年   46篇
  2016年   87篇
  2015年   52篇
  2014年   183篇
  2013年   131篇
  2012年   73篇
  2011年   144篇
  2010年   115篇
  2009年   128篇
  2008年   131篇
  2007年   163篇
  2006年   122篇
  2005年   83篇
  2004年   90篇
  2003年   61篇
  2002年   46篇
  2001年   67篇
  2000年   48篇
  1999年   46篇
  1998年   42篇
  1997年   22篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   13篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   7篇
  1973年   1篇
排序方式: 共有2036条查询结果,搜索用时 15 毫秒
51.
This study investigates the use of both amplitude and time-of-flight based pulsed ultrasonic polar scan (P-UPS) as a sophisticated non-destructive damage sensor for fiber reinforced composites. Focus is put on stiffness related damage phenomena, which are in general difficult to monitor nondestructively, and their associated signature in the P-UPS image. Various composite samples, with different damage states, have been inspected at multiple material spots with the P-UPS technique. The results demonstrate the capability of the P-UPS method to obtain a unique signature of the local material damage characteristics. Several indicators in the acquired P-UPS images have been identified from which the type and level of material degradation can be obtained. The P-UPS extracted characteristics are fully supported by simulations, conventional tests as well as visual inspection.  相似文献   
52.
We investigated the face-stabilized Open-Hole Compression (OHC) test method for evaluating the effects of fiber waviness on the compression strength of continuous carbon fiber reinforced polymer composites. Temporal evaluations of the load-deformation response, acoustic emissions and optical microscopy are used to understand the failure modes and damage progression in the OHC specimen. The failure modes observed are structurally correlated to matrix failure and kink zone formation leading to fiber fracture. The results show how the resin pocket plays a more critical role than the layup in influencing the initiation of damage in the composite specimens.  相似文献   
53.
Chuanfei Dong  Xu Ma 《Physics letters. A》2010,374(24):2417-2423
The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this Letter, we study dynamics of traffic flow with real-time information. The influence of a feedback strategy named Corresponding Angle Feedback Strategy (CAFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.  相似文献   
54.
The measurement of powder flowability is a major concern for most industrial processes that deal with the handling of bulk solids as raw materials,intermediates,or products.The development of devices that measure the flowability of non-aerated powders has not progressed as rapidly as might have been hoped since most research activities have been based on various types of shear testers intended to aid the design of hoppers.A new flowability indicator named as weighted cohesion (WS) is established using newly...  相似文献   
55.
56.
In this work the use of our recently constructed irradiation chamber was involved in the current experiments. The absorption of alpha particle in air has been studied through a set of experiments in which the stopping power has been measured. A comparison between the calculated values and the present experimental results is given and a good agreement has been found. Critical angle (θc) determination has been carried out using two different techniques, via indirect and direct measurements, under different etching conditions and at various alpha energies. An empirical fit of θch (h is the removal thickness layer) dependence has been calculated and found to work well in the studied h ranges. Also, the inclined alpha tracks parameters of energies between 1.0 and 5.0 MeV have been studied. Results can be successfully applicable in alpha autoradiography studies and detector efficiency determination for track registration in plastic recorders.  相似文献   
57.
Layered transition metal dichalcogenides (TMDs) are a diverse group of materials whose properties vary from semiconducting to metallic with a variety of many body phenomena, ranging from charge density wave (CDW), superconductivity, to Mott-insulators. Recent interest in topologically protected states revealed also that some TMDs host bulk Dirac- or Wyle-semimetallic states and their corresponding surface states. In this review, we focus on the synthesis of TMDs by vacuum processes, such as molecular beam epitaxy (MBE). After an introduction of these preparation methods and categorize the basic electronic properties of TMDs, we address the characterization of vacuum synthesized materials in their ultrathin limit-mainly as a single monolayer material. Scanning tunneling microscopy and angle resolved photoemission spectroscopy has revealed detailed information on how monolayers differ in their properties from multi-layer and bulk materials. The status of monolayer properties is given for the TMDs, where data are available. Distinct modifications of monolayer properties compared to their bulk counterparts are highlighted. This includes the well-known transition from indirect to direct band gap in semiconducting group VI-B TMDs as the material-thickness is reduced to a single molecular layer. In addition, we discuss the new or modified CDW states in monolayer VSe2 and TiTe2, a Mott-insulating state in monolayer 1T-TaSe2, and the monolayer specific 2D topological insulator 1T′-WTe2, which gives rise to a quantum spin Hall insulator. New structural phases, that do not exist in the bulk, may be synthesized in the monolayer by MBE. These phases have special properties, including the Mott insulator 1T-NbSe2, the 2D topological insulators of 1T′-MoTe2, and the CDW material 1T-VTe2. After discussing the pure TMDs, we report the properties of nanostructured or modified TMDs. Edges and mirror twin grain boundaries (MTBs) in 2D materials are 1D structures. In group VI-B semiconductors, these 1D structures may be metallic and their properties obey Tomonaga Luttinger quantum liquid behavior. Formation of Mo-rich MTBs in Mo-dichalcogenides and self-intercalation in between TMD-layers are discussed as potential compositional variants that may occur during MBE synthesis of TMDs or may be induced intentionally during post-growth modifications. In addition to compositional modifications, phase switching and control, in particular between the 1H and 1T (or 1T′) phases, is a recurring theme in TMDs. Methods of phase control by tuning growth conditions or by post-growth modifications, e.g. by electron doping, are discussed. The properties of heterostructures of TMD monolayers are also introduced, with a focus on lateral electronic modifications in the moiré-structures of group VI-B TMDs. The lateral potential induced in the moiré structures forms the basis of the currently debated moiré-excitons. Finally, we review a few cases of molecular adsorption on nanostructured monolayer TMDs. This review is intended to present a comprehensive overview of vacuum studies of fundamental materials' properties of TMDs and should complement the investigations on TMDs prepared by exfoliation or chemical vapor deposition and their applications.  相似文献   
58.
We have numerically simulated the operation of the Fourier-domain mode-locked (FDML) fiber laser based on the wavelength reconstruction method instead of numerical solving the nonlinear Schrödinger equation. We studied the influences of the filter bandwidth and the relative time delay caused by the fiber chromatic dispersion on the instantaneous linewidth of the FDML fiber laser. The results show that the instantaneous linewidth broadens as the filter bandwidth and the relative time delay increase. When the filter has the bandwidth of 0.02 nm, the narrowest and broadest instantaneous linewidths are 0.024 and 0.042 nm, respectively. We give an understanding for the oscillation of the instantaneous linewidth of FDML. The presented result can be used to evaluate the performance achievable in the FDML fiber lasers.  相似文献   
59.
60.
We report the first experimental demonstration of efficient and high-power operation of a Ti:sapphire laser pumped by a simple, compact, continuous-wave (cw) fiber-laser-based green source. The pump radiation is obtained by direct single-pass second-harmonic-generation (SHG) of a 33 W, cw Yb-fiber laser in a 30-mm-long MgO:sPPLT crystal, providing 11 W of single-frequency green power at 532 nm in TEM00 spatial profile with power and frequency stability better than 3.3% and 32 MHz, respectively, over 1 h. The Ti:sapphire laser is continuously tunable across 743-970 nm and can deliver an output power up to 2.7 W with a slope efficiency as high as 32.8% under optimum output coupling of 20%. The laser output has a TEM00 spatial profile with M2<1.44 across the tuning range and exhibits a peak-to-peak power fluctuation below 5.1% over 1 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号